Плоское напряженное состояние проушины, соединенной с жестким круглым включением

В.И. Ряжских, email: ryazhkih_vi@ mail.ruА.В. Ряжских, email: ryazhkihav@ bk.ruВ.А. Рябцев, wlandrr@ yandex.ru

Воронежский государственный технический университет

Аннотация. В работе в вариационной формулировке рассмотрено плоское напряженное состояние тонкой пластины в форме проушины, соединенной с круглым жестким телом. Задача решается гибридным методом, использующим методы оптимизации, конечных элементов и конечных разностей. Исследуется симметричное воздействие и поэтому рассмотрена половина одной из частей, расположенной вблизи от отверстия.

Ключевые слова: плоское напряженное состояние, пластина, гибридный метод, метод оптимизации, метод конечных элементов, метод конечных разностей.

Введение

В данной работе рассмотрено плоское напряженное состояние весьма распространенной в технике детали – плоской проушины, предназначенной для передачи сил на валы, оси и крепежные элементы машин и конструкций.

Пусть u, v перемещения вдоль осей системы координат x, y, a $u_{x}, u_{y}, u_{y}, v_{y}, v_{x}$ частные производные перемещений по переменным x u_{y} . Пусть деформации и напряжения в точке определяются матрицами

$$\hat{\varepsilon} = \begin{bmatrix} \varepsilon_x & \varepsilon_y & \varepsilon_{xy} \end{bmatrix}^T = \begin{bmatrix} u_{,x} & u_{,y} & u_{,y} + v_{,x} \end{bmatrix}^T,$$

$$\hat{\sigma} = \begin{bmatrix} \sigma_x & \sigma_y & \tau_{xy} \end{bmatrix}^T$$
(1)

Пусть *е*, *v* - модуль упругости и коэффициент Пуассона материала пластины. Закон Гука для плоского напряженного состояния имеет вид

$$\hat{\sigma} = D \hat{\varepsilon} \tag{2}$$

где

[©] Ряжских В.И., Ряжских А.В., Рябцев В.А., 2018

$$\boldsymbol{D} = e \begin{bmatrix} 1 & v & 0 \\ v & 1 & 0 \\ 0 & 0 & 0.5(1 - v) \end{bmatrix}$$
(3)

Рисунок. Рисунок. Расположение и нумерация узлов и областей.

Пусть \overline{G} - область, занятая срединной плоскостью проушины в системе $x \partial y$ (рисунок) с границей s, G -открытое множество. Пусть жесткое включение неподвижно и при деформировании проушины контакт между ней и включением сохраняется. Тогда на границе отверстия s_9 перемещения отсутствуют. Внешние края проушины - границы s_1 , s_5 - s_8 свободны. Правое сечение проушины s_4 получает заданное поступательное перемещение $u = u_0$.

Граничные условия, за исключением закрепленных точек на S_g , где u = 0, v = 0, имеют вид:

$$S_1 \quad \sigma_x = 0, \tau_{xy} = 0 ; \qquad (4)$$

$$S_2, S_3, v = 0, \sigma_x = 0, \tau_{xv} = 0;$$
 (5)

$$S_4 \quad u = u_0, \quad \tau_{xy} = 0;$$
 (6)

$$S_5, S_7, \sigma_v = 0, \tau_{xv} = 0$$
 (7)

Пусть $\sigma_v = \sigma_x \cos^2 \varphi + \sigma_y \sin^2 \varphi + 2\tau_{xy} \cos \varphi \sin \varphi$ и $\tau_v = (\sigma_y - \sigma_x) \cos \varphi \sin \varphi + \tau_{xy} \cos 2\varphi$ - нормальное и касательное напряжения на границе; φ - угол между нормалью к границе и осью х. Тогда граничные условия на границах s_6 и s_8 примут вид:

$$S_6 = \sigma_v = 0.5(\sigma_x + \sigma_y + 2\tau_{xy}) = 0, \tau_v = 0.5(\sigma_y - \sigma_x) = 0;$$
 (8)

$$S_8 = \sigma_v = 0,5(\sigma_x + \sigma_v - 2\tau_{xv}) = 0, \ \tau_v = 0,5(\sigma_x - \sigma_v) = 0$$
(9)

Для получения граничных условий, выраженных через перемещения, используются очевидные соотношения

$$\sigma_{x} = e(u_{,x} + vv_{,y}), \ \sigma_{y} = e(v_{,y} + vu_{,x}), \ \tau_{xy} = 0.5 e(1 - v)(u_{,y} + v_{,x}).$$
(10)

Гибридный метод описан в [1]. Он заключается в использовании в решении задач методов оптимизации, конечных элементов и конечных разностей. Преимущество гибридного метода заключается в использовании в простых прямоугольных областях вместо конечно элементных соотношений конечно – разностных соотношений. Это позволяет значительно экономить потребную память ЭВМ. Гибридный метод сочетает удобства и устраняет недостатки указанных методов (подробно в [1]), в частности позволяет при оптимизации не учитывать естественные граничные условия для искомых функций. Применительно к данной задаче этот метод заключается в разделении области \overline{G} на несколько областей. Область $\overline{G_{I}}$ имеет сравнительно простую форму с границами, параллельными и перпендикулярными осям координат, а также в виде наклонных прямых линий, проходящих через узлы сетки. В такой области краевая задача аппроксимируется МКР. Область \overline{G}_{2} , примыкает к сложной части границы – отверстию и в ней для дискретизации уравнений задачи используются конечные элементы. Это позволяет, хотя бы приближенно, воспроизвести криволинейную часть границы \overline{G} , и избежать проблем, связанных с использованием фиктивных узлов сетки для формирования граничных условий. Область \overline{G}_{1} может быть разбита на несколько более простых областей. Узлы КЕ на границе между \overline{G}_1 и \overline{G}_2 рекомендуется совмещать с узлами сетки.

На рисунке жирными точками указаны узлы КЭ. Общие узлы КЭ и сетки пронумерованы в порядке следования номеров узлов сетки. Эти же узлы с системе номеров узлов КЭ имеют номера от 1 до 21. Узлы с номерами 22-25 принадлежат только КЭ. Узлы КЭ с номерами 26-44 лежат на границе отверстия.

Полная энергия упругого деформирования проушины

$$U = 0.5 \int_{G} h \hat{\varepsilon}^{T} \boldsymbol{D} \hat{\varepsilon} dF = U_{1} + U_{2}$$
(11)

где, U_1 , U_2 - энергии деформирования для частей пластины $\overline{G_1}$ и $\overline{G_2}$.

Область \overline{G}_1 заменяется системой l регулярно расположенных узлов с шагами h_x и h_y вдоль осей х и у, а производные перемещений в узлах \overline{G}_1 – широко известными конечно – разностными выражениями с точностью порядка h_x^2 или h_y^2 . С учетом разностных выражений u_x и u_y получается $U_1(\breve{w}_1) \cong \widetilde{U}_1(\breve{w}_1) = \breve{w}_1^T \widetilde{M}_1 \breve{w}_1$, где \widetilde{M}_1 - симметричная блочная матрица порядка $l \times l \times (2 \times 2)$ системы разностных уравнений, в которой неизвестными считаются величины перемещений всех узлов, покрывающих \overline{G}_1 , в том числе и граничных и входящих в КЭ, \breve{w}_1 блочная матрица узловых перемещений порядка $l \times (2 \times 1)$.

Градиент \tilde{U}_I в точке \tilde{w}_I определяется по формуле grad $(\tilde{U}_I) = 2 \tilde{M}_I \tilde{w}_I$.

Для вычисления U_2 МКЭ в области \overline{G}_2 используется простейший треугольный элемент с узлами в вершинах [2].

Если u_k (k = i, j, m) - некоторое перемещение узлов КЭ с локальными номерами 1,2,3, соответствующими глобальным номерам узлов i, j, m, то перемещение точки КЭ с координатами x и y представляется в виде линейной по x и y функции $\tilde{u} = \hat{N}\hat{u} = [N_1, N_2, N_3]^T [u_i, u_j, u_m]^T$, где $N_{(...)}$ - функции формы КЭ; $\hat{u} = [u_1, u_2, u_3]^T$ - матрица - столбец соответствующих перемещений.

Если $\hat{w} = \begin{bmatrix} u_i & v_i & u_j & v_j & u_m & v_m \end{bmatrix}^T$ - матрица узловых перемещений, то деформация в пределах КЭ определяется матрицей [3]

$$\hat{\boldsymbol{\varepsilon}} = \begin{bmatrix} N_{i,x} & 0 & N_{j,x} & 0 & N_{m,x} & 0 \\ 0 & N_{i,x} & 0 & N_{j,x} & 0 & N_{m,x} \\ N_{i,y} & N_{i,y} & N_{j,y} & N_{j,y} & N_{m,y} & N_{m,y} \end{bmatrix}^{T} \boldsymbol{w} = \boldsymbol{B} \boldsymbol{w}.$$
(12)

Если p - номер КЭ, n - количество КЭ, а r - количество их узлов в \overline{G}_2 , то при замене \overline{G}_2 системой КЭ U_2 заменяется функционалом

$$\widetilde{U}_{2} = 0.5 \sum_{p=1}^{n} \widetilde{\varepsilon}_{p}^{T} \widetilde{D}_{p} \widetilde{\varepsilon}_{p} = 0.5 \sum_{p=1}^{n} \widetilde{w}_{p}^{T} \widetilde{D}_{p} \widetilde{B}_{p} \widetilde{w}_{p} = 0.5 \widetilde{w}_{2}^{T} \widetilde{M}_{2} \widetilde{w}_{2}$$
(13)

где \tilde{w}_2 - матрица узловых перемещений порядка $r \times (2 \times 1)$, \tilde{M}_2 - блочная матрица жесткости ансамбля КЭ порядка $r \times r \times (2 \times 2)$.

Градиент функционала \tilde{U}_2 в точке \tilde{w}_2 определяется выражением grad $(\tilde{U}_2) = 2M_2 \tilde{w}_2$.

Согласно [3], операторы U_1 и U_2 в $L_2(\overline{G_1})$ $L_2(\overline{G_2})$ положительны, а операторы $\tilde{U}_1 - \tilde{p}_1^T \tilde{w}_1$ и $\tilde{U}_2 - \tilde{p}_2^T \tilde{w}_2$ не являются знакоопределенными. Однако они имеют положительную вторую вариацию и, следовательно, единственные минимумы в своих областях определения.

Пусть k - общее количество узлов в \overline{G} , а M, \overline{w} и \overline{P} - блочные симметричная матрица порядка $k \times k \times (2 \times 2)$ и матрицы порядка $k \times (2 \times 1)$ для всей области \overline{G} , полученная распространением \tilde{M}_{1} , \tilde{M}_{2} , \overline{w}_{1} , \overline{w}_{2} на всю \overline{G} . Тогда $\tilde{U} = \overline{w}^{T} M \overline{w}$, а вектор - градиент функционала \tilde{U} в точке \overline{w} равен

grad
$$\tilde{U} = \hat{U}_{w} = \partial \tilde{U} / \partial \bar{w} = 2 M^{T} \bar{w}$$
. (14)

Поскольку вторая вариация \tilde{U} по \tilde{w} положительна, \tilde{U} выпукл по \tilde{w} и, следовательно, имеет локальный минимум в \overline{G} .

Для примера при ранее описанных граничных условиях решена сформулированная выше задача при $u_0 = 0.2$ мм для проушины толщиной 0.5 см с размером вдоль оси х 210 мм, вдоль оси у 60 мм и отверстием радиуса R = 30 мм при $E = 2*10^5$ МПа, v = 0.33.

Использовалось всего 46 КЭ и 365 узлов, из которых 23 входят только в КЭ, а 21 – являются общими узлами КЭ и сетки. Для создания сетки использовалось 342 узла.

Вычисления проводились по оригинальной программе на алгоритмическом языке TurboPascal 7.0. Функционал \tilde{U} минимизировался методом инерционного спуска с проецированием градиента \hat{U}_w на область \overline{G} [4], то есть в точках $s_2 - s_4$ и s_9 , где заданы перемещения, компоненты градиента определялись с учетом заданных перемещений, а соответствующие компоненты градиента полагались равными нулю. В точках, границ с ограничениями на производные перемещения, компоненты градиента определялись с учетом соотношениями между этими производными.

5

Вектор \vec{w} определялся по итерационной формуле $\vec{w}_{i+1} = \vec{w}_i - t \hat{\vec{U}}_{wi} (\vec{w}_i) + \alpha (\vec{w}_i - \vec{w}_{i-1})$, где t шаг; α - в первом приближении заданная величина и изменяющаяся в процессе вычислений с учетом информации о величине $\hat{\vec{U}}_{wi}$ и различии направлений $\hat{\vec{U}}_w (\vec{w}_i)$ и $\hat{\vec{U}}_w (\vec{w}_{i-1})$.

В качестве начального приближения использовался вектор \tilde{w}_0 , удовлетворяющий граничным условиям для *и* и *v* на s_4 и s_9 точек закрепления. В части ограниченной узлами 169, 192, 342 и 316 *и* и *v* определялись как при растяжении. В прочих точках перемещения принимались равными нулю.

Таблица 1

Ν	192	216	240	264	289	315	342
и	0.200	0.200	0.200	0.200	0.200	0.200	0.200
v	0	-0.0028	-0.0055	-0.0083	-0.0110	-0.0138	-00165
σ _x	333.33	333.36	333.36	333.33	39333.33	333.33	333.33
σ _y	11.339	19.000	17.808	18.026	16.473	16.889	0.0000

Результаты вычислений для s₄

Таблица 2

Ν	184	208	232	256	281	307	334
и	0.1333	0.1333	0.1333	0.1333	0.1333	0.1333	0.1333
v	0	-0.0027	-0.0055	-0.0083	-0.0110	-0.0138	-0.0165
σ _x	333.337	333.365	333.363	333.365	333.363	333.365	333.336
σy	11.100	18.000	17.230	17.010	16.163	16.003	0.0000
Ν	175	199	223	247	272	298	325
и	0.0583	0.0583	0.0558	0.0820	0.0581	0.0581	0.0543
v	0	-0.0027	-0.0055	-0.00800	-0.0114	-0.0111	-0.0158
σ_x	333.366	333.366	333.845	333.413	349.7111	394.582	417.844
σy	1.2760	-0.6344	4.675	-6.916	53.186	41.795	0

Результаты вычислений для характерных узлов

Для определения энергии и вычисления градиента матрица *м* не использовалась, что позволило решить эту задачу по программе на языке Pascal на ПС.

Вычисления показали, что результат минимизации \tilde{U} слабо (в пределах вычислительных погрешностей) зависит от выбора \tilde{w}_0 . Скорость сходимости вычислений, зависела от величины перемещения на границе s_4 и α . При начальном $\alpha = 1$ решение получалось за 150-1500 приближений в режиме диалога. Важно отметить, что в процессе оптимизации при монотонном убывании U величины U_1 и U_2 могут изменяться не монотонно.

В таблицах 1 и 2, где N - номера узлов, приведены перемещения и и v в мм и нормальные напряжения в узлах σ_x и σ_y в МПа.

Список литературы

1. Ряжских, В.И. Об одном методе решения краевых задач с эллиптическими операторами / В. И. Ряжских, А. В.Ряжских, В. А Рябцев // Прикладная физика и математика. – 2018. - №2. - С. 46-50.

2. Зенкевич О. Метод конечных элементов в технике. Перевод с английского / О. Зенкевич ; – М.: Мир, 1975. – 542 с.

3. Михлин С. Г. Вариационные методы в математической физике / С. Г. Михлин ; – М.: Наука, 1970. - 512 с.

4. Поляк Б.Т. Введение в оптимизацию / Б.Т. Поляк ; – М.: Наука, 1983. - 384 с.

Voronezh State Technical University

Flat stress state of an eye connected to a round inclusion

V.I. Ryazhskikh, A.V. Ryazhskikh, V.A. Ryabtsev

Аннотация. In the paper, the plane stress state of a thin plate in the form of an eye connected to a round rigid body is considered in a variational formulation. The problem is solved by a hybrid method using optimization methods, finite elements and finite differences. The symmetrical effect is investigated and therefore half of one of the parts located near the hole is considered.

Ключевые слова: plane stress state, plate, hybrid method, optimization method, finite element method, finite difference method.